Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 54(2): 334-341, 2023 Mar.
Article in Chinese | MEDLINE | ID: covidwho-2288878

ABSTRACT

The taste buds in the human tongue contain specialized cells that generate taste signals when they are stimulated. These signals are then transmitted to the central nervous system, allowing the human body to distinguish nutritious substances from toxic or harmful ones. This process is critical to the survival of humans and other mammals. A number of studies have shown that dysgeusia, or taste disorder, is a common complication of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, which can severely affect patients' nutritional intake and quality of life. Based on the physiological process of taste perception, the direct causes of dysgeusia include dysfunction of taste receptors and damage to the taste nervous system, while indirect causes include genetic factors, aging-related changes, bacterial and viral infections, and cancer treatments such as radiotherapy and chemotherapy. The pathogenic factors of dysgeusia are complicated, further research is needed to fully understand the underlying mechanisms, and some of the reported findings and conclusions still need further validation. All these form a great challenge for clinical diagnosis of the cause and targeted treatment of dysgeusia. Herein, we reviewed published research on the physiological process of taste perception, the potential mechanisms of taste disorders related to SARS-CoV-2 infection, and strategies for prevention and treatment, providing theoretical support for establishing and improving the comprehensive management of COVID-19 complicated by taste disorders.


Subject(s)
COVID-19 , Olfaction Disorders , Humans , COVID-19/complications , Dysgeusia/etiology , Dysgeusia/therapy , Taste Perception , SARS-CoV-2 , Taste/physiology , Quality of Life , Smell , Olfaction Disorders/complications , Taste Disorders/therapy , Taste Disorders/complications
2.
J Med Virol ; 95(4): e28703, 2023 04.
Article in English | MEDLINE | ID: covidwho-2288875

ABSTRACT

Given the prevalence of low-pathogenic but highly infectious Omicron variants, a cohort study was conducted to assess the response and duration of novel coronavirus-inactivated vaccine-induced antibodies 1 year after the third dose (Day 641). Blood samples were collected and anti-spike neutralizing antibodies (neutralizing antibody), total antibodies against the receptor-binding domain of the spike protein (total antibody), and immunoglobulin G antibodies against the spike protein (IgG antibody) were determined. Antibody kinetics and attenuation were evaluated. The results showed that the levels of neutralizing, total, and IgG antibodies on Day 641 were 98.05 IU/mL, 152.8 AU/mL, and 7.68 S/CO, respectively. Levels of anti-SARS-CoV-2 antibodies were higher in the younger subgroup than in the older subgroup at several time points after the second and third doses. The seropositive rate of neutralizing antibodies providing protection from infection or severe infection was 46.87% and 87.5%, and the seropositive rates of total antibody and IgG antibody were maintained at 100% and 90.63%, respectively. The half-lives of neutralizing, total, and IgG antibodies were 186.89, 363.04, and 417.50 days, respectively. Collectively, anti-SARS-CoV-2 antibodies may provide a certain degree of protection from infection 1 year after the third dose and high protection from severe infection.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Humans , Prospective Studies , Cohort Studies , Longitudinal Studies , COVID-19/prevention & control , SARS-CoV-2 , Antibodies, Viral , Antibodies, Neutralizing , Immunoglobulin G
3.
Appl Nanosci ; : 1-7, 2022 Feb 03.
Article in English | MEDLINE | ID: covidwho-2254562

ABSTRACT

The importance of ferritin as an inflammatory marker is well recognized. However, it is unknown whether this differs between Covid-19 and non-Covid-19 patients. The blood levels of ferritin, white blood cells (WBC), C-reactive protein (CRP), and lactate dehydrogenase may all be measured to check whether there is a difference. The researchers want to see if the inflammatory process changes between these two kinds (LDH). Methodology: Blood samples were collected from 119 COVID-19 patients in the hospital and 50 healthy persons. Corona virus was discovered when a nasopharyngeal swab was collected and tested using the RT-PCR technique. Ferritin, LDH, WBC, and CRP were also tested using Min Vidus, AccEnT 200, Ruby system, and Latx in that sequence. The study revealed that COVID-19 patients had higher levels of ferritin, WBC, CRP, and LDH in their blood than healthy people, with values of 539,08 ng/mL, 44.7109/L, 22.95 mg/L, and 403.95 U/L for COVID-19 patients versus 77.103 ng/mL, 4.9.4109/L, 6.53 mg/L, and 171.56 U/L for healthy people. According to the existing data, males are more likely to be infected with COVID-19 (81%) than females (32%), and females had greater ferritin, CRP, WBC, and LDH levels than males. Because they are related to an optimum test for predicting COVID-19 infection, the recommended cut-off values for ferritin, WBC, CRP, and LDH are 109.8 ng/mL, 14.9109/L, 10.15 mg/L, and 229.33 U/L, respectively. Finally, an increase in ferritin levels in the inflammatory response to COVID-19 is linked to an increase in inflammatory markers including CRP, WBC, and LDH, which may assist in the diagnosis of COVID-19 infection.

4.
Vaccines (Basel) ; 11(2)2023 Feb 06.
Article in English | MEDLINE | ID: covidwho-2237600

ABSTRACT

To identify false-positive SARS-CoV-2 test results caused by novel coronavirus inactivated vaccine contamination, a novel RT-qPCR targeting the ORF1ab and N genes of SARS-CoV-2 and Vero gene was developed. The amplification efficiency, precision, and lower limit of detection (LLOD) of the RT-qPCR assay were determined. A total of 346 clinical samples and 132 environmental samples were assessed, and the diagnostic performance was evaluated. The results showed that the amplification efficiency of the ORF1ab, N, and Vero genes was 95%, 97%, and 93%, respectively. The coefficients of variation of Ct values at a concentration of 3 × 104 copies/mL were lower than 5%. The LLOD for the ORF1ab, N, and Vero genes reached 8.0, 3.3, and 8.2 copies/reaction, respectively. For the 346 clinical samples, our RT-qPCR assay identified SARS-CoV-2-positive and SARS-CoV-2-negative samples with a sensitivity of 100.00% and a specificity of 99.30% and novel coronavirus inactivated vaccine-contaminated samples with a sensitivity of 100% and a specificity of 100%. For the environmental samples, our RT-qPCR assay identified novel coronavirus inactivated vaccine-contaminated samples with a sensitivity of 88.06% and a specificity of 95.38%. In conclusion, the RT-qPCR assay we established can be used to diagnose COVID-19 and, to a certain extent, false-positive results due to vaccine contamination.

6.
Vaccines (Basel) ; 11(1)2023 Jan 16.
Article in English | MEDLINE | ID: covidwho-2200956

ABSTRACT

To obtain more insight into IgM in anti-SARS-CoV-2 immunity a prospective cohort study was carried out in 32 volunteers to longitudinally profile the kinetics of the anti-SARS-CoV-2 IgM response induced by administration of a three-dose inactivated SARS-CoV-2 vaccine regimen at 19 serial time points over 456 days. The first and second doses were considered primary immunization, while the third dose was considered secondary immunization. IgM antibodies showed a low secondary response that was different from the other three antibodies (neutralizing, total, and IgG antibodies). There were 31.25% (10/32) (95% CI, 14.30-48.20%) of participants who never achieved a positive IgM antibody conversion over 456 days after vaccination. The seropositivity rate of IgM antibodies was 68.75% (22/32) (95% CI, 51.80-85.70%) after primary immunization. Unexpectedly, after secondary immunization the seropositivity response rate was only 9.38% (3/32) (95% CI, 1.30-20.10%), which was much lower than that after primary immunization (p = 0.000). Spearman's correlation analysis indicated a poor correlation of IgM antibodies with the other three antibodies. IgM response in vaccinees was completely different from the response patterns of neutralizing, total, and IgG antibodies following both the primary immunization and the secondary immunization and was suppressed by pre-existing immunity induced by primary immunization.

7.
Front Cell Infect Microbiol ; 12: 1060031, 2022.
Article in English | MEDLINE | ID: covidwho-2198721

ABSTRACT

Introduction: To analyze the current state, hotspots, and cutting-edge trends of genomics research on the outbreak of Corona Virus Disease 2019 (COVID-19) from 2019 to the present (March 2022). Methods: Statistical and visual analysis of COVID-19 genomics results published in the 2019-2022 Web of Science Core Collection Database (WOSCC) was performed using CiteSpace software, including data on countries, institutions, authors, journals, co-citations, keywords, etc. Results: A total of 9133 English literature were included. The number of publications has significantly increased in 2021, and it is expected that this upward trend will last into the future. The research hotspots of COVID-19 revolve around quarantine, biological management, angiotensin-converting enzyme-2, RNA-dependent RNA polymerase, etc. Research frontiers and trends focus on molecular docking, messenger RNA, functional receptor, etc. Conclusion: The last two years have seen a significant increase in research interest in the field of novel coronavirus pneumonia genomics.


Subject(s)
COVID-19 , Humans , Molecular Docking Simulation , Bibliometrics , Genomics , Software
8.
Crit Care ; 26(1): 154, 2022 05 27.
Article in English | MEDLINE | ID: covidwho-1866391

ABSTRACT

BACKGROUND: The physiological effects of prone ventilation in ARDS patients have been discussed for a long time but have not been fully elucidated. Electrical impedance tomography (EIT) has emerged as a tool for bedside monitoring of pulmonary ventilation and perfusion, allowing the opportunity to obtain data. This study aimed to investigate the effect of prone positioning (PP) on ventilation-perfusion matching by contrast-enhanced EIT in patients with ARDS. DESIGN: Monocenter prospective physiologic study. SETTING: University medical ICU. PATIENTS: Ten mechanically ventilated ARDS patients who underwent PP. INTERVENTIONS: We performed EIT evaluation at the initiation of PP, 3 h after PP initiation and the end of PP during the first PP session. MEASUREMENTS AND MAIN RESULTS: The regional distribution of ventilation and perfusion was analyzed based on EIT images and compared to the clinical variables regarding respiratory and hemodynamic status. Prolonged prone ventilation improved oxygenation in the ARDS patients. Based on EIT measurements, the distribution of ventilation was homogenized and dorsal lung ventilation was significantly improved by PP administration, while the effect of PP on lung perfusion was relatively mild, with increased dorsal lung perfusion observed. The ventilation-perfusion matched region was found to increase and correlate with the increased PaO2/FiO2 by PP, which was attributed mainly to reduced shunt in the lung. CONCLUSIONS: Prolonged prone ventilation increased dorsal ventilation and perfusion, which resulted in improved ventilation-perfusion matching and oxygenation. TRIAL REGISTRATION: ClinicalTrials.gov, NCT04725227. Registered on 25 January 2021.


Subject(s)
Lung , Respiratory Distress Syndrome , Electric Impedance , Humans , Perfusion , Prone Position , Prospective Studies , Respiratory Distress Syndrome/therapy , Tomography, X-Ray Computed
9.
Virol Sin ; 2022 Nov 22.
Article in English | MEDLINE | ID: covidwho-2122890

ABSTRACT

The recently discovered SARS-CoV-2 variant Omicron (B.1.1.529) has rapidly become a global public health issue. The substantial mutations in the spike protein in this new variant have raised concerns about its ability to escape from pre-existing immunity established by natural infection or vaccination. In this review, we give a summary of current knowledge concerning the antibody evasion properties of Omicron and its subvariants (BA.2, BA.2.12.1, BA.4/5, and BA.2.75) from therapeutic monoclonal antibodies and the sera of SARS-CoV-2 vaccine recipients or convalescent patients. We also summarize whether vaccine-induced cellular immunity (memory B cell and T cell response) can recognize Omicron specifically. In brief, the Omicron variants demonstrated remarkable antibody evasion, with even more striking antibody escape seen in the Omicron BA.4 and BA.5 sub-lineages. Luckily, the third booster vaccine dose significantly increased the neutralizing antibodies titers, and the vaccine-induced cellular response remains conserved and provides second-line defense against the Omicron.

10.
Int Immunopharmacol ; 112: 109285, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2105146

ABSTRACT

PURPOSE: The accuracy of level of anti- severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies is a great concern. We aimed to compare the efficacy of anti-SARS-CoV-2 antibody detection kits from two manufacturers in evaluating the efficacy of SARS-CoV-2 vaccines. METHODS: The immune responses and consistency of four anti-SARS-CoV-2 antibodies were evaluated using two manufacturers' antibody kits (A and B) in 61 subjects within 160 days after vaccination with the CoronaVac vaccine. RESULTS: The total seropositivity rates of neutralizing antibodies and IgM antibodies detected by kit A were higher than those detected by kit B (P = 0.003 and P < 0.001, respectively). Conversely, the total seropositivity rates of total antibodies and IgG antibodies were higher in kit B than kit A (P < 0.001 and P < 0.001, respectively). The consistency rates showed less than 90% agreement between the kits for the detection of the four antibodies, and the κ score showed moderate or substantial consistency. The half-lives of neutralizing antibodies, total antibodies, and IgG antibodies within 160 days after vaccination, detected by kit A were 63.88 days, 80.50 days, and 63.70 days, respectively and by kit B were 97.06 days, 65.41 days, and 77.99 days, respectively. CONCLUSION: The efficacy of antibody detection differed between the two commercial anti-SARS-CoV-2 antibody kits, although there was moderate consistency, which may affect the clinical application and formulation of the vaccine strategy.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Cohort Studies , Prospective Studies , COVID-19 Vaccines , COVID-19/prevention & control , Antibodies, Viral , Immunoglobulin M , Immunoglobulin G , Vaccination , Antibodies, Neutralizing
11.
Health Care Science ; 2022.
Article in English | EuropePMC | ID: covidwho-2058618

ABSTRACT

The Covid‐19 pandemic produced a complex combination of intense negative emotions among the general public, influencing people's coping reactions toward the pandemic. Yet each discrete emotion may affect people's behaviors in different ways. Unveiling the specific emotion–behavior relationships can provide valuable implications for designing effective intervention programs. Through the lens of the appraisal theory of emotion, we assessed the relationships between negative emotions and pandemic‐related behaviors among the Chinese population midst the early outbreak of the pandemic. An anonymous online survey was distributed to mainland Chinese participants (n = 2976), which assessed individuals' emotional states and behavioral reactions to the pandemic. Consistent with the differential appraisal theme underlying each negative emotion as delineated by the appraisal theory, mixed relationships between emotions and pandemic‐related behaviors were revealed. Specifically, anxiety was positively associated with behaviors of seeking pandemic‐related information, sharing such information, and stockpiling preventive goods, yet, contrary to prediction, anxious people were reluctant to adopt preventive measures, which is maladaptive. Sad people sought information less frequently and exhibited lower intention to stockpile preventive goods;but, opposing prediction, they shared information less frequently. Angry people were more active in sharing information and in stockpiling preventive goods. These findings suggest that public health practitioners can utilize the emotion–behavior relationships to identify the vulnerable individuals who tend to adopt maladaptive coping behaviors, help them address emotional distress, and encourage their adoption of effective coping behaviors. This research unveils the distinct relationships between Chinese public's discrete negative emotions (anxiety, anger, and sadness) elicited by the Covid‐19 pandemic and their behavioral reactions (seeking information, sharing information, preventive health behavior, and stockpiling) toward the pandemic. Unveiling these specific emotion–behavior relationships can help to identify the vulnerable individuals who tend to adopt maladaptive coping behaviors and encourage their adoption of effective coping behaviors, and help to design effective intervention programs.

12.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-1989752

ABSTRACT

COVID-19, caused by SARS-CoV-2, has resulted in hundreds of millions of infections and millions of deaths worldwide. Preliminary results exhibited excellent efficacy of SARS-CoV-2 vaccine in preventing hospitalization and severe disease. However, data on inactivated vaccine-induced immune responses of naturally infected patients are limited. Here, we characterized SARS-CoV-2 RBD-specific IgG (anti-S-RBD IgG) and neutralizing antibodies (NAbs) against SARS-CoV-2 wild type and variants of concerns (VOCs), as well as RBD-specific IgG-secreting B cells and antigen-specific T cells respectively in 51 SARS-CoV-2 recovered subjects and 63 healthy individuals. In SARS-CoV-2 recovered patients, a single dose vaccine is sufficient to reactivate robust anti-S-RBD IgG and NAbs. The neutralizing capacity against VOCs increased significantly post-vaccination no matter healthy individuals or SARS-CoV-2 recovered patients. In addition, RBD-specific IgG-secreting B cells in SARS-CoV-2 recovered patients were significantly higher than that in healthy vaccine recipients. After the vaccine booster, the frequencies of specific IFN-γ+ CD4+ T cell, IL-2+ CD4+ T cell, and TNF-α+ CD4+ T cell responses were significantly increased in SARS-CoV-2 recovered patients. Our data highlighted the safety and utility of SARS-CoV-2 inactivated vaccine and demonstrated that robust humoral and cellular immune response can be reactivated by one-dose inactivated vaccine in SARS-CoV-2 recovered patients.

15.
Disease Surveillance ; 37(1):72-76, 2022.
Article in Chinese | GIM | ID: covidwho-1789475

ABSTRACT

Objective: To understand the change characteristics of respiratory pathogens in hospitalized children with respiratory tract infection in Shunyi district of Beijing from 2019 to 2020, and to provide basis for the prevention and treatment of respiratory tract diseases in children.

18.
Int J Gen Med ; 15: 849-857, 2022.
Article in English | MEDLINE | ID: covidwho-1674134

ABSTRACT

BACKGROUND: The role of the complement system in coronavirus disease 2019 (COVID-19) remains controversial. This study aimed to evaluate the relationship between serum complement C3 levels, clinical worsening, and risk of death in hospitalized patients with COVID-19. METHODS: Data were collected from 216 adults with COVID-19 admitted to a designated clinical center in Wuhan Union Hospital (China) between February 13, 2020, and February 29, 2020. Their complement C3 levels were measured within 24 h of admission. The primary outcome was a clinical worsening of 2 points on a 6-point ordinal scale. The secondary outcome was all-causes of death. Inverse probability of treatment weighting (IPTW) analysis was conducted to adjust for the baseline confounders. RESULTS: The median value of C3 was 0.89 (interquartile range, 0.78-1.01) g/L. Clinical worsening occurred in 12.3% (7/57) and 2.5% (4/159) of patients with baseline C3 levels < and ≥0.79 g/L, respectively (hazard ratio [HR], 5.22; 95% confidence interval [CI], 1.53-17.86). After IPTW adjustment, the risk for clinical worsening was 4-fold greater (weighted HR, 4.61; 95% CI, 1.16-18.4) in patients with C3 levels less than 0.79 g/L comparatively. The sensitivity analyses revealed the robustness of the results. No significant associations between C3 levels and death were observed on unadjusted (HR, 2.92; 95% CI, 0.73-11.69) and IPTW analyses (weighted HR, 3.78; 95% CI, 0.84-17.04). CONCLUSION: Low complement C3 levels are associated with a higher risk for clinical worsening among inpatients with COVID-19. The serum C3 levels may contribute to the identification of patient populations that could benefit from therapeutic complement inhibition.

19.
Frontiers in immunology ; 12, 2021.
Article in English | EuropePMC | ID: covidwho-1602189

ABSTRACT

While the immunogenicity of inactivated vaccines against coronavirus disease 2019 (COVID‐19) has been characterized in several well-conducted clinical trials, real-world evidence concerning immune responses against severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) raised by such vaccines is currently missing. Here, we comprehensively characterized various parameters of SARS-CoV-2-specific cellular and humoral immune responses induced by inactivated COVID-19 vaccines in 126 individuals under real-world conditions. After two doses of vaccination, S-receptor binding domain IgG (S-RBD IgG) and neutralizing antibody (NAb) were detected in 87.06% (74/85) and 78.82% (67/85) of individuals, respectively. Female participants developed higher concentrations of S-RBD IgG and NAb compared to male vaccinees. Interestingly, a longer dosing interval between the first and second vaccination resulted in a better long-term SARS-CoV-2 S-RBD IgG response. The frequencies of CD4+ T cells that produce effector cytokines (IFN-γ, IL-2, and TNF-α) in response to stimulation with peptide pools corresponding to the SARS-CoV-2 spike (S), nucleocapsid (N) or membrane (M) protein were significantly higher in individuals received two doses of vaccine than those received one dose of vaccine and unvaccinated individuals. S, N, or M-specific CD4+ and CD8+ T cell responses were detectable in 95.83% (69/72) and 54.16% (39/72) of double-vaccinated individuals, respectively. The longitudinal analysis demonstrated that CD4+ T cell responses recognizing S, N, and M waned quickly after a single vaccine dose, but were boosted and became more sustained following a second dose. Overall, we provide a comprehensive characterization of immune responses induced by inactivated COVID-19 vaccines in real-world settings, suggesting that both humoral and cellular SARS-CoV-2-specific immunity are elicited in the majority of individuals after two doses of inactivated COVID-19 vaccines.

20.
Ann Med ; 53(1): 181-188, 2021 12.
Article in English | MEDLINE | ID: covidwho-1575964

ABSTRACT

OBJECTIVE: To illustrate the effect of corticosteroids and heparin, respectively, on coronavirus disease 2019 (COVID-19) patients' CD8+ T cells and D-dimer. METHODS: In this retrospective cohort study involving 866 participants diagnosed with COVID-19, patients were grouped by severity. Generalized additive models were established to explore the time-course association of representative parameters of coagulation, inflammation and immunity. Segmented regression was performed to examine the influence of corticosteroids and heparin upon CD8+ T cell and D-dimer, respectively. RESULTS: There were 541 moderate, 169 severe and 156 critically ill patients involved in the study. Synchronous changes of levels of NLR, D-dimer and CD8+ T cell in critically ill patients were observed. Administration of methylprednisolone before 14 DFS compared with those after 14 DFS (ß = 0.154%, 95% CI=(0, 0.302), p=.048) or a dose lower than 40 mg per day compared with those equals to 40 mg per day (ß = 0.163%, 95% CI=(0.027, 0.295), p=.020) significantly increased the rising rate of CD8+ T cell in 14-56 DFS. CONCLUSIONS: The parameters of coagulation, inflammation and immunity were longitudinally correlated, and an early low-dose corticosteroid treatment accelerated the regaining of CD8+ T cell to help battle against SARS-Cov-2 in critical cases of COVID-19.


Subject(s)
CD8-Positive T-Lymphocytes/drug effects , COVID-19 Drug Treatment , Glucocorticoids/administration & dosage , Inflammation/drug therapy , Adult , Aged , Aged, 80 and over , Blood Coagulation/drug effects , Blood Coagulation/immunology , CD8-Positive T-Lymphocytes/immunology , COVID-19/blood , COVID-19/diagnosis , COVID-19/immunology , Dose-Response Relationship, Drug , Female , Fibrin Fibrinogen Degradation Products/analysis , Fibrin Fibrinogen Degradation Products/immunology , Heparin/administration & dosage , Humans , Inflammation/blood , Inflammation/diagnosis , Inflammation/immunology , Linear Models , Longitudinal Studies , Lymphocyte Count , Male , Methylprednisolone/administration & dosage , Middle Aged , Models, Biological , Retrospective Studies , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , Severity of Illness Index , Time Factors , Time-to-Treatment , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL